Hourly electric load forecasting for buildings using hybrid intelligent modelling
نویسندگان
چکیده
منابع مشابه
Short - term thermal and electric load forecasting in buildings
Increasing environmental awareness and energy costs encourage the increase of the contribution of renewable energy sources (RES) to the energy supply of buildings. However, the integration of RES and energy storage systems introduces significant challenges for the energy management system (EMS) of complex building energy systems. An energy management strategy based on fixed control rules may fa...
متن کاملDevelopment of a Hybrid Intelligent System for Electrical Load Forecasting
3 Introduction Introduction This paper presents a hybrid intelligent system for This paper presents a hybrid intelligent system for electrical load forecast, named by PREVER. electrical load forecast, named by PREVER. Artificial Neural Networks (ANN) were combined with Artificial Neural Networks (ANN) were combined with Heuristic Rules to create the system. Heuristic Rules to create the system....
متن کاملBuilding a Fuzzy Expert System for Electric Load Forecasting Using a Hybrid Neural Network
This paper presents the development of a hybrid neural network to model a fuzzy expert system for time series forecasting of electricc load. The hybrid neural network is trained to develop fuzzy logic rules andjind optimal inputloutput membership values of load and weather parameters. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used for training the ...
متن کاملHybrid methodology for hourly global radiation forecasting in Mediterranean area
The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Earth and Environmental Science
سال: 2021
ISSN: 1755-1315
DOI: 10.1088/1755-1315/669/1/012022